Cara Menghitung Panjang Sisi Bujursangkar Terbesar Di Dalam Bulat Yang Diketahui Panjang Jari-Jarinya
Satu bujursangkar terbesar yang sanggup dibentuk di dalam bidang sebuah bundar yaitu bujursangkar yang keempat titik sudutnya menyentuh busur lingkaran. Sebuah bundar yang sepusat dengan titik tengah sebuah bujursangkar dan keempat titk sudut bujursangkar tersebut sempurna menyinggung busur bundar disebut sebagai bundar luar bujursangkar.
Misalkan diketahui jari-jari (radius) bundar tersebut yaitu r maka kita akan memilih panjang sisi bujursangkar. Misalkan panjang sisi bujursangkar yang akan kita hitung, kita beri simbol a.
Perhatikan gambar di bawah ini. Misalkan keempat titik sudut bujursangkar tersebut masing-masing kita beri nama U, V, W, dan X. Dengan menarik satu garis dari sudut kiri atas bujursangkar ke titik sentra bundar kita membagi dua bujursangkar secara diagonal. Sehingga kini kita dapatkan dua segitiga siku-siku (yang juga segitiga sama sisi) yaitu UVW dan segitiga UXW.
Untuk menghitung panjang sisi bujursangkar yang diketahui panjang jari-jarinya sanggup dipakai pendekatan menghitung panjang sisi segitiga. Perhatikan segitiga UVW. Pada segitiga ini, garis UW merupakan sisi miring dari segitiga siku-siku UVW. Panjang garis UW yaitu 2r (dua kali jari-jari lingkaran).
Sekarang kita akan menghitung panjang sisi segitiga siku-siku UVW. Segitiga UVW juga merupakan segitiga sama sisi, sehingga kedua sisi siku-siku panjangnya sama yaitu a. Untuk menghitung panjang sisi siku-siku sebuah segitiga sanggup dilakukan dengan memakai Teorema Phytagoras.
Teorema Phytagoras atau Hukum Phytagoras berbunyi kuadrat sisi miring suatu segitiga siku-siku sama dengan penjumlahan kuadrat dari kedua sisi siku-sikunya. Menurut Teorea Phytagoras, pada segitiga UVW berlaku sebagai berikut.
UV2 + VW2 = UW2
Dimana
UV = VW = a
UW = 2r
Maka
a2 + a2 = (2r)2
2a2 = 4r2
a2 = 2r2
a = r√2
Contoh Cara Menghitung Panjang Sisi Bujursangkar dalam Lingkaran
Berikut ini beberapa teladan cara menghitung panjang sisi bujursangkar dalam lingkaran.
Contoh Soal 1
Soal: Di dalam sebuah bundar terdapat sebuah bujursangkar. Keempat titik sudut bujursangkar tersebut sempurna menyinggung busur lingkaran. Jika panjang jari jari bundar tersebut 10 cm, hitunglah panjang sisi bujursangkar di dalam bundar tersebut.
Jawab:
Diketahui r = 10 cm.
a2 + a2 = (2r)2
2a2 = 4r2
a2 = 2r2
a = r√2
a = 10 x √2
a = 10√2
Makara panjang sisi bujursangkar tsb yaitu 10√2
Contoh Soal 2
Soal: Di dalam bidang sebuah bundar dengan jari-iari √2 cm , terdapat sebuah bujursangkar. Keempat sudut bujursangkar menyinggung busur lingkaran. Berapa panjang sisi bujursangkar tersebut?.
Jawab:
Diketahui r = √2 cm.
a2 + a2 = (2r)2
2a2 = 4r2
a2 = 2r2
a = r√2
a = √2 x √2
a = 2
Makara panjang sisi bujursangkar tsb yaitu 2 cm
Contoh Soal 3
Soal: Hitunglah panjang sisi bujursangkar terbesar yang sanggup dibentuk dalam sebuah bundar dengan jari-jari 5√2 cm.
Jawab:
Diketahui r = 5√2 cm.
a2 + a2 = (2r)2
2a2 = 4r2
a2 = 2r2
a = r√2
a = 5√2 x √2
a = 5 x 2
a = 10
Makara panjang sisi bujursangkar tsb yaitu 10
Catatan:
Dalam beberapa model soal untuk bentuk bujursangkar di dalam sebuah lingkaran, kita diminta untuk memilih perbandingan luas atau perbandingan keliling antara bujursangkar dengan lingkaran. Sering juga, kita diminta untuk menghitung luasan bidang bundar di luar bujursangkar. Pada soal-soal demikian, langkah pertama yang harus dilakukan yaitu menghitung panjang sisi bujursangkar.
0 Response to "Cara Menghitung Panjang Sisi Bujursangkar Terbesar Di Dalam Bulat Yang Diketahui Panjang Jari-Jarinya"
Posting Komentar