Menentukan Rumus Suku Ke-N Dan Beda Barisan Konsep Turunan

.com - Penggunaan Konsep Turunan dalam Deret Aritmatika. Pada pembahasan sebelumnya, edutafsi telah memaparkan bahwa persamaan rumus jumlah n suku pertama (Sn) mampu dinyatakan dalam bentuk fungsi kuadrat dalam variabel n. Sebelumnya juga sudah dibahas bahwa rumus suku ke-n dan beda barisan mampu ditentukan berdasarkan rumus jumlah n suku pertamanya. Nah, jikalau rumus jumlah n suku pertama tersebut dinyatakan dalam bentuk fungsi kuadrat, ternyata kita mampu memanfaatkan konsep turunan untuk memilih rumus suku ke-n dan beda barisan tersebut. Pada pembahasan ini, edutafsi akan membahas bagaimana cara memilih rumus suku ke-n dan beda barisan aritmatika dengan konsep turunan jikalau rumus Sn dintakan sebagai fungsi kuadrat.

Dengan menggunakan konsep turuan (differensial), kita mampu memilih rumus suku ke-n dan beda barisan aritmatika dengan beberapa langkah mudah dengan catatan, rumus jumlah n suku pertamanya dinyatakan dalam bentuk fungsi kuadrat (Sn = An2 + Bn). Sebelum membahas bagaimana caranya, ada baiknya kita mengingat kembali bagaimana prinsip atau konsep turunan fungsi.

Turunan atau differensial merupakan salah satu proses menurunkan suatu fungsi terhadap variabel tertentu. Misalkan y ialah sebuah fungsi daalam variabel x atau y = f(x), dan y merupakan fungsi yang mampu diturunkan pada setiap titik, maka turunan pertama fungsi y terhadap x umumnya ditulis sebagai dy/dx atau y' atau f '(x).

Turunan pertama dari sebuah fungsi f(x) terhadap x mampu ditulis sebagai :
⇒ f '(x) = dy/dx = df(x)/dx

Misal sebuah fungsi dinyatakan dalam bentuk f(x) = axn + bx, maka turunan pertama dari fungsi tersebut mampu ditulis sebagai diberikut :
⇒ f '(x) = df(x)/dx = d(axn + bx)/dx
⇒ f '(x) = n.axn-1 + b

 Penggunaan Konsep Turunan dalam Deret Aritmatika Menentukan Rumus Suku Ke-N Dan Beda Barisan Konsep Turunan

Contoh :
Tentukan turunan pertama dari fungsi diberikut ini :
a). f(x) = 4x3 + 5x
b). y = 2x2 - 9x
c). Sn = An2 + Bn

Pembahasan :
a). f '(x) = 3.4 x3-1 + 5 = 12 x2 + 5
b). y' = 2.2 x2-1 - 9 = 4x - 9
c). Sn' = 2.An2-1 + B = 2 An + B.

A. Menentukan Un Jika Sn dinyatakan Dalam Fungsi Kuadrat

Jika rumus jumlah n suku pertama (Sn) dinyatakan dalam bentuk fungsi kuadrat dalam variabel n, maka rumus suku ke-n barisan tersebut merupakan turunan pertama Sn dikurang dengan setengah kali turunan kedua Sn.

Rumus Sn mampu dinyatakan dalam bentuk fungsi kuadrat sebagai diberikut :
⇒ Sn = F(n) = An2 + Bn

Turunan pertama dari fungsi tersebut ialah :
⇒ Sn' = 2 An + B

Turunan kedua dari fungsi tersebut ialah :
⇒ Sn'' = 2A

Maka, rumus suku ke-n deret tersebut ialah :
⇒ Un = Sn' - ½Sn''
⇒ Un = 2 An + B - ½(2A)
⇒ Un = 2 An + (B - A)

Jadi, ada dua rumus yang mampu digunakan, ialah :
Un = Sn' − ½Sn''
Un = 2 An + (B - A)

Dengan Un menyatakan rumus suku ke-n barisan aritmatika, n menyatakan banyak suku (sebagai variabel), A dan B merupakan bilangan tertentu yang mampu dilihat melalui persamaan dalam soal. Untuk memahami pemakaian rumus tersebut, perhatikan acuan diberikut ini.

Contoh : 
Jika jumlah n suku pertama suatu deret aritmatika dinyatakan oleh Sn = 5n2 + 2n, maka tentukanlah rumus suku ke-n deret tersebut.

Pembahasan :
Dik : Sn = 5n2 + 2n
Dit : Un = ... ?

Cara Pertama :
⇒ Un = Sn' - ½Sn''
⇒ Un = (10n + 2) - ½(10)
⇒ Un = 10n + 2 - 5
⇒ Un = 10n - 3

Cara Kedua :
Dari fungsi Sn = 5n2 + 2n, diketahui A = 5, B = 2 (Perhatikan bentuk Sn = An2 + Bn).
⇒ Un = 2 An + (B - A)
⇒ Un = 2.5n + (2 - 5)
⇒ Un = 10n - 3

Jadi, rumus suku ke-n barisan aritmatika tersebut ialah Un = 10n - 3. Bandingkan hasil pada cara pertama dan cara kedua.

B. Menentukan Beda Barisan Dengan Konsep Turunan

Jika rumus jumlah n suku pertama (Sn) suatu deret aritmatika dinyatakan dalam bentuk fungsi kuadrat dalam variabel n, maka beda barisan atau beda deret aritmatika tersebut akan sama dengan turunan kedua Sn.

Rumus Sn mampu dinyatakan dalam bentuk fungsi kuadrat sebagai diberikut :
⇒ Sn = F(n) = An2 + Bn

Turunan pertama dari fungsi tersebut ialah :
⇒ Sn' = 2 An + B

Turunan kedua dari fungsi tersebut ialah :
⇒ Sn'' = 2A

Maka, beda barisan mampu ditentukan dengan rumus :
⇒ b = Sn''
⇒ b = 2 A

Jadi, ada dua rumus yang mampu digunakan, ialah :
b = Sn''
b = 2 A

Dengan b menyatakan beda barisan aritmatika, Sn'' menyatakan turunan kedua dari Sn, dan A merupakan bilangan tertentu yang mampu dilihat melalui persamaan dalam soal. Untuk memahami pemakaian rumus tersebut, perhatikan acuan diberikut ini.

Contoh :
Jika jumlah n suku pertama suatu deret aritmatika dinyatakan oleh Sn = 3n2 + 5n, maka tentukanlah beda barisan tersebut.

Pembahasan :
Dik : Sn = 3n2 + 5n
Dit : b = ... ?

Cara Pertama :
Turunan pertama Sn :
⇒ Sn' = 6n + 5

Turunan kedua Sn :
⇒ Sn'' = 6

Beda barisan tersebut ialah :
⇒ b = Sn''
⇒ b = 6

Cara Kedua :
Dari fungsi Sn = 3n2 + 5n, diketahui A = 3 dan B = 5
⇒ b = 2A
⇒ b = 2(3)
⇒ b = 6

Jadi, beda barisan tersebut ialah 6. Bandingkan hasil yang diperoleh melalui cara pertama dan cara kedua. Anda mampu memilih salah satu cara yang paling anda anggap mudah sesuai dengan pemahaman anda.

Demikianlah pembahasan singkat mengenai cara memilih suku ke-n dan beda deret aritmatika jikalau rumus Sn dinyatakan dalam bentuk fungsi kuadrat dengan menggunakan konsep turunan. Jika bahan mencar ilmu ini berkhasiat, bantu kami membagikannya kepada teman anda melalui tombol share di bawah ini.
Sumber http://duniabelajarsiswapintar39.blogspot.com

Berlangganan Informasi Terbaru:

0 Response to "Menentukan Rumus Suku Ke-N Dan Beda Barisan Konsep Turunan"

Posting Komentar