Penyelesaian Persamaan Eksponen
Penyelesaian dari suatu persamaan eksponen dalam peubah x ialah semua nilai x yang memenuhi persamaan eksponen tersebut atau dengan kata lain, nilai-nilai x yang menjadikan persamaan eksponen tersebut bernilai benar. Berikut bentuk-bentuk persamaan eksponen beserta sifat-sifat yang dipakai dalam menentukan solusinya.
A. Bentuk af(x) = ag(x)
Persamaan eksponen diatas mempunyai bilangan pokok (basis) yang sama pada kedua ruas, yaitu a dan nilainya konstan. Namun pangkatnya berbeda, yaitu f(x) dan g(x). Satu-satunya kondisi supaya persamaan tersebut bernilai benar ialah ketika pangkatnya sama, yaitu ketika f(x) = g(x).Sifat A Misalkan a > 0 dan a ≠ 1.
Jika af(x) = ag(x) maka f(x) = g(x)
Contoh 1
Tentukan penyelesaian dari 22x-7 = 81-x
Jawab :
Langkah pertama, samakan basis pada kedua ruas.
22x-7 = 81-x
22x-7 = (23)1-x
22x-7 = 23-3x
Karena basisnya sama, menurut sifat A diperoleh
2x - 7 = 3 - 3x
5x = 10
x = 2
Jadi, penyelesaiannya ialah x = 2
B. Bentuk af(x) = bf(x)
Persamaan eksponen diatas mempunyai bilangan pokok yang berbeda, yaitu a dan b dan keduanya konstan. Namun, kedua pangkatnya sama, yaitu f(x). Untuk a, b ≠ 0, maka a0 = 1 dan b0 = 1. Akibatnya a0 = b0, untuk a, b ≠ 0. Jadi, supaya persamaan af(x) = bf(x) bernilai benar, haruslah f(x) = 0.Sifat B Misalkan a, b > 0 dan a, b ≠ 1.
Jika af(x) = bf(x) maka f(x) = 0
Contoh 2
Tentukan penyelesaian dari 32x-2 = 5x-1
Jawab :
Kedua basis pada persamaan diatas berbeda dan tidak ada sifat-sifat perpangkatan yang sanggup kita gunakan untuk menyamakan kedua basis tersebut. Namun, kedua pangkatnya sanggup kita samakan menjadi sebagai berikut :
32x-2 = 5x-1
32(x-1) = 5x-1
9x-1 = 5x-1
Berdasarkan sifat B, maka
x - 1 = 0
x = 1
Jadi, penyelesaiannya ialah x = 1
C. Bentuk af(x) = bg(x)
Persamaan eksponen diatas mempunyai bilangan pokok yang berbeda, yaitu a dan b yang nilainya konstan. Dan pangkatnya juga berbeda yaitu f(x) dan g(x). Solusi dari bentuk menyerupai ini sanggup kita tentukan dengan memakai sifat-sifat logaritma.Sifat C Misalkan a, b > 0 dan a, b ≠ 1.
Jika af(x) = bg(x) maka log af(x) = log bg(x)
Contoh 3
Tentukan penyelesaian dari (\(\frac{2}{3}\))x = 61-x
Jawab :
Basis pada kedua ruas persamaan diatas berbeda, begitu pula pangkatnya. Berdasarkan sifat C, maka
log (\(\frac{2}{3}\))x = log 61-x
x log (\(\frac{2}{3}\)) = (1 - x) log 6 log an = n log a
x log (\(\frac{2}{3}\)) = log 6 - x log 6
x log (\(\frac{2}{3}\)) + x log 6 = log 6
x (log (\(\frac{2}{3}\)) + log 6) = log 6
x log 4 = log 6 log a + log b = log (ab)
x = \(\mathrm{\frac{log\;6}{log\;4}}\)
x = 4log 6
Jadi, penyelesaiannya ialah x = 4log 6
D. Bentuk f(x)g(x) = 1
Ada 3 kondisi yang menjadikan persamaan diatas bernilai benar.- Karena 1g(x) = 1 benar untuk setiap g(x), maka f(x)g(x) = 1 akan bernilai benar ketika f(x) = 1.
- Karena (-1)g(x) = 1 benar jikalau g(x) genap, maka f(x)g(x) = 1 akan bernilai benar ketika f(x) = -1 dengan syarat g(x) genap.
- Karena f(x)0 = 1 benar jika f(x) ≠ 0, maka f(x)g(x) = 1 akan bernilai benar ketika g(x) = 0 dengan syarat f(x) ≠ 0.
(1) f(x) = 1
(2) f(x) = -1, dengan syarat g(x) genap
(3) g(x) = 0, dengan syarat f(x) ≠ 0
Contoh 4
Tentukan HP dari (2x + 3)x-1 = 1
Jawab :
Misalkan : f(x) = 2x + 3 dan g(x) = x - 1
Solusi 1 : f(x) = 1
2x + 3 = 1
2x = -2
x = -1 ✔
Solusi 2 : f(x) = -1, dengan syarat g(x) genap
2x + 3 = -1
2x = -4
x = -2 ✘
Periksa :
Untuk x = -2 → g(x) = -2 - 1 = -3 (ganjil)
Karena g(x) ganjil, maka x = -2 tidak memenuhi.
Solusi 3 : g(x) = 0, dengan syarat f(x) ≠ 0
x - 1 = 0
x = 1 ✔
Periksa :
Untuk x = 1 → f(x) = 2(1) + 3 = 5 ≠ 0.
Karena f(x) ≠ 0, maka x = 1 memenuhi.
HP = {-1, 1}
E. Bentuk f(x)h(x) = g(x)h(x)
Persamaan eksponen diatas memuat bilangan pokok yang berbeda, yaitu f(x) dan g(x), namun kedua pangkatnya sama, yaitu h(x). Ada 3 kondisi yang menjadikan persamaan diatas bernilai benar.- Karena pangkatnya sama, haruslah bilangan pokoknya juga sama, yaitu f(x) = g(x).
- Dua buah bilangan yang berlainan tanda, jikalau dipangkatkan bilangan genap yang sama akan menghasilkan bilangan yang sama. Sebagai ilustrasi, (2)h(x) = (-2)h(x) bernilai benar ketika h(x) genap. Jadi, persamaan f(x)h(x) = g(x)h(x) akan bernilai benar jikalau f(x) = -g(x) dengan syarat h(x) genap.
- Untuk f(x) dan g(x) ≠ 0, maka f(x)0 = 1 dan g(x)0 = 1. Akibatnya, f(x)0 = g(x)0 ketika f(x) dan g(x) ≠ 0. Jadi, persamaan f(x)h(x) = g(x)h(x) akan bernilai benar jikalau h(x) = 0 asalkan f(x) ≠ 0 dan g(x) ≠ 0.
Sifat E Jika f(x)h(x) = g(x)h(x) maka
(1) f(x) = g(x)
(2) f(x) = -g(x), dengan syarat h(x) genap
(3) h(x) = 0, dengan syarat f(x) ≠ 0 dan g(x) ≠ 0
Contoh 5
Tentukan HP dari (2x + 1)x-6 = (x + 5)x-6
Jawab :
Misalkan : f(x) = 2x + 1, g(x) = x + 5 dan h(x) = x - 6
Solusi 1 : f(x) = g(x)
2x + 1 = x + 5
x = 4 ✔
Solusi 2 : f(x) = -g(x), dengan syarat h(x) genap
2x + 1 = -(x + 5)
2x + 1 = -x - 5
3x = -6
x = -2 ✔
Periksa :
Untuk x = -2 → h(x) = -2 - 6 = -8 (genap)
Karena h(x) genap, maka x = -2 memenuhi.
Solusi 3 : h(x) = 0, dengan syarat f(x) ≠ 0 dan g(x) ≠ 0
x - 6 = 0
x = 6 ✔
Periksa : Untuk x = 6 maka
f(x) = 2(6) + 1 = 13 ≠ 0
g(x) = 6 + 5 = 11 ≠ 0
Karena keduanya ≠ 0, maka x = 6 memenuhi.
Catatan : Jika seandainya salah satu atau keduanya bernilai nol, maka x = 6 tidak memenuhi.
∴ HP = {-2, 4, 6}
F. Bentuk f(x)g(x) = f(x)h(x)
Persamaan eksponen diatas mempunyai basis yang sama, yaitu f(x). Namun kedua pangkatnya berbeda, yaitu g(x) dan h(x). Ada 4 kondisi yang menjadikan persamaan diatas bernilai benar.- Karena basisnya sama, haruslah pangkatnya juga sama, yaitu g(x) = h(x).
- Untuk berapapun nilai g(x) dan h(x), maka 1g(x) = 1 dan 1h(x) = 1. Akibatnya, 1g(x) = 1h(x) untuk berapapun nilai g(x) dan h(x). Jadi, persamaan f(x)g(x) = f(x)h(x) akan bernilai benar jikalau f(x) = 1.
- Karena (-1)g(x) = (-1)h(x) benar ketika g(x) dan h(x) keduanya genap atau keduanya ganjil, maka persamaan f(x)g(x) = f(x)h(x) akan bernilai benar jikalau f(x) = -1 dengan syarat g(x) dan h(x) keduanya genap atau keduanya ganjil.
- Untuk g(x) dan h(x) positif, maka 0g(x) = 0 dan 0h(x) = 0. Akibatnya, 0g(x) = 0h(x) ketika g(x) dan h(x) positif. Jadi, persamaan f(x)g(x) = f(x)h(x) akan bernilai benar jikalau f(x) = 0 dengan syarat g(x) dan h(x) kedua positif.
Sifat F Jika f(x)g(x) = f(x)h(x) maka
(1) g(x) = h(x)
(2) f(x) = 1
(3) f(x) = -1, g(x) dan h(x) keduanya genap/ganjil
(4) f(x) = 0, g(x) dan h(x) keduanya positif
Contoh 6
Tentukan HP dari (x - 4)4x = (x - 4)1+3x
Jawab :
Misalkan : f(x) = x - 4, g(x) = 4x dan h(x) = 1 + 3x
Solusi 1 : g(x) = h(x)
4x = 1 + 3x
x = 1 ✔
Solusi 2 : f(x) = 1
x - 4 = 1
x = 5 ✔
Solusi 3 : f(x) = -1, g(x) dan h(x) keduanya genap/ganjil.
x - 4 = -1
x = 3 ✔
Periksa : Untuk x = 3 maka
g(x) = 4(3) = 12 (genap)
h(x) = 1 + 3(3) = 10 (genap)
Karena keduanya genap, maka x = 3 memenuhi.
Catatan : Jika seandainya keduanya ganjil, maka x = 3 juga memenuhi. Namun, jikalau salah satu genap dan yang lain ganjil maka x = 3 tidak memenuhi.
Solusi 4 : f(x) = 0, g(x) dan h(x) keduanya positif.
x - 4 = 0
x = 4 ✔
Periksa : Untuk x = 4 maka
g(x) = 4(4) = 16 (positif)
h(x) = 1 + 3(4) = 13 (positif)
Karena keduanya positif, maka x = 4 memenuhi.
Catatan : Jika seandainya salah satu atau keduanya bernilai ≤ 0, maka x = 4 tidak memenuhi.
∴ HP = {1, 3, 4, 5}
Coba perhatikan kembali solusi-solusi yang menyangkut syarat pangkat genap pada sifat-sifat diatas. Yang menarik untuk dipertanyakan ialah bagaimana seandainya pangkatnya berbentuk pecahan. Hal ini perlu diulas alasannya ialah tidak menutup kemungkinan dikala menilik apakah pangkatnya genap atau ganjil, ternyata yang kita temukan ialah bilangan pecahan, yang sudah terang bukan merupakan bilangan genap ataupun ganjil.
Yang perlu dipahami ialah ketika kita menawarkan syarat bahwa pangkatnya harus genap tujuannya ialah ingin memperoleh nilai positif. Kita tahu bahwa (-1)p bernilai positif ketika p genap. Namun, bagaimana seandainya p bukan bilangan bundar melainkan bilangan pecahan, misalkan \(\mathrm{\frac{m}{n}}\) dengan m dan n bilangan bulat.
Pertanyaan spesifiknya ialah kapan (-1)\(\mathrm{^{\frac{m}{n}}}\) bernilai positif ?
Berdasarkan sifat eksponen, kekerabatan pangkat potongan dengan bentuk akar sanggup kita nyatakan sebagai berikut $$(-1)^{\frac{m}{n}}=\sqrt[n]{(-1)^{m}}$$ Dari bentuk diatas, sanggup kita simpulkan bahwa
- (-1)\(\mathrm{^{\frac{m}{n}}}\) bernilai positif, jikalau m genap.
- (-1)\(\mathrm{^{\frac{m}{n}}}\) bernilai negatif, jikalau m dan n ganjil
- (-1)\(\mathrm{^{\frac{m}{n}}}\) tidak terdefinisi untuk bilangan real, jikalau m ganjil dan n genap.
Karena (-1)\(\mathrm{^{\frac{{\color{Red} m}}{n}}}\) bernilai positif ketika m genap, maka syarat pangkat genap terpenuhi ketika m genap. Namun, bukan berarti kita mengganggap bahwa m/n ialah bilangan genap.
Sebagai contoh, (3x - 2)x+1 = 1
Salah satu solusi dari persamaan diatas ialah ketika basisnya -1 dengan syarat pangkatnya genap (sifat D.2)
3x - 2 = -1
3x = 1
x = \(\frac{1}{3}\)
Periksa :
Untuk x = \(\frac{1}{3}\) → x + 1 = \(\frac{1}{3}\) + 1 = \(\frac{{\color{Red} 4}}{3}\)
Karena 4 bilangan genap, maka x = \(\frac{1}{3}\) memenuhi.
Selain bentuk-bentuk diatas, terdapat pula persamaan eksponen yang sanggup dinyatakan dalam bentuk persamaan kuadrat. Biasanya, persamaan menyerupai ini memuat 3 suku dengan 1 diantaranya konstan. Untuk solusinya sanggup disimak pada contoh berikut!
Contoh 7
Tentukan HP dari 22x -
Jawab :
22x -
(2x)2 -
(2x)2 -
Misalkan 2x = p, sehingga
p2 - 6p + 8 = 0
(p - 2)(p - 4) = 0
p = 2 atau p = 4
Untuk p = 2
2x = 2
2x = 21
x = 1
Untuk p = 4
2x = 4
2x = 22
x = 2
Jadi, HP = {1, 2}
Ketika mencari solusi dari persamaan eksponen, langkah pertama yang kita lakukan ialah memperhatikan basis dan pangkat pada kedua ruas persamaan tersebut, apakah sama atau berbeda. Hal ini kita lakukan sebagai contoh dalam menentukan sifat mana yang akan digunakan. Seandainya kedua basisnya konstan dan memungkinkan untuk disamakan, maka samakan basisnya terlebuh dahulu.
Berikut beberapa contoh latihan soal persamaan eksponen.
Latihan 1
Tentukan penyelesaian dari (0,125)x+1 = \(\sqrt{16^{1-\mathrm{x}}}\)
Jawab :
(0,125)x+1 = \(\sqrt{16^{1-\mathrm{x}}}\)
\(\mathrm{\left ( \frac{1}{8} \right )^{x+1}}\) = \(16^{\frac{1-\mathrm{x}}{2}}\)
\(\mathrm{\left ( 2^{-3} \right )^{x+1}}\) = \(\left ( 2^{4} \right )^{\frac{1-\mathrm{x}}{2}}\)
(2)-3x-3 = (2)2-2x
Berdasarkan sifat A diperoleh
-3x - 3 = 2 - 2x
-x = 5
x = -5
Jadi, penyelesaiannya ialah x = -5
Latihan 2
Jika penyelesaian dari 5t4-1 = 3t4-1 adalah t1 dan t2 dengan t1 > t2, tentukan nilai t2 - t1 !
Jawab :
Berdasarkan sifat B maka
t4 - 1 = 0
(t2 - 1)(t2 + 1) = 0
(t + 1)(t - 1)(t2 + 1) = 0
t = -1 atau t = 1
Catatan : t2 + 1 = 0 tidak mempunyai penyelesaian real, sanggup diuji dari nilai diskriminannya yang kurang dari nol.
Karena t1 > t2 , maka t1 = 1 dan t2 = -1. Akibatnya
t2 - t1 = -1 - 1 = -2
Latihan 3
Tentukan HP dari 3x2-1 = 2x+1
Jawab :
Berdasarkan sifat C, maka
log 3x2-1 = log 2x+1
(x2 - 1) log 3 = (x + 1) log 2
(x + 1)(x - 1) log 3 = (x + 1) log 2
Perhatikan bahwa ruas kiri dan kanan mempunyai faktor yang sama, yaitu (x + 1). Artinya, ruas kiri akan sama dengan ruas kanan ketika (x + 1) = 0.
x + 1 = 0
x = -1
Untuk (x + 1) ≠ 0, maka
(x - 1) log 3 = log 2
x log 3 - log 3 = log 2
x log 3 = log 2 + log 3
x log 3 = log 6
x = \(\mathrm{\frac{log\;6}{log\;3}}\)
x = 3log 6
HP = {-1, 3log 6}
Latihan 4
Tentukan HP dari (x2 - x - 1)3x-9 = 1
Jawab :
Berdasarkan sifat D, persamaan eksponen diatas mempunyai 3 kemungkinan solusi.
Solusi 1 : Basisnya sama dengan 1.
x2 - x - 1 = 1
x2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1 atau x = 2
Solusi 2 : Basisnya sama dengan -1, dengan syarat pangkatnya genap.
x2 - x - 1 = -1
x2 - x = 0
x(x - 1) = 0
x = 0 atau x = 1
Untuk x = 0 → (3x - 9) bernilai ganjil
Untuk x = 1 → (3x - 9) bernilai genap
Jadi, yang memenuhi ialah x = 1
Solusi 3 : Pangkatnya sama dengan nol, dengan syarat basisnya tidak sama dengan nol.
3x - 9 = 0
3x = 9
x = 3
Periksa : Untuk x = 3 → (x2 - x - 1) ≠ 0
Jadi, x = 3 memenuhi
∴ HP = {-1, 1, 2, 3}
Latihan 5
Tentukan HP dari (x2 + 3x - 2)2x+3 = (x2 + 2x + 4)2x+3
Jawab :
Berdasarkan sifat E, persamaan eksponen diatas mempunyai 3 kemungkinan solusi.
Solusi 1 : Basis kiri sama dengan basis kanan.
x2 + 3x - 2 = x2 + 2x + 4
3x - 2 = 2x + 4
x = 6
Solusi 2 : Basis berlainan tanda, dengan syarat pangkatnya genap.
x2 + 3x - 2 = -(x2 + 2x + 4)
x2 + 3x - 2 = -x2 - 2x - 4
2x2 + 5x + 2 = 0
(2x + 1)(x + 2) = 0
x = -1/2 atau x = -2
Periksa :
Untuk x = -1/2 → (2x + 3) bernilai genap
Untuk x = -2 → (2x + 3) bernilai ganjil
Jadi, yang memenuhi ialah x = -1/2
Solusi 3 : Pangkatnya sama dengan nol, dengan syarat kedua basisnya tidak sama nol.
2x + 3 = 0
x = -3/2
Periksa : Untuk x = -3/2 maka
(x2 + 3x - 2) ≠ 0
(x2 + 2x + 4) ≠ 0
Karena keduanya ≠ 0, maka x = -3/2 memenuhi.
∴ HP = {-3/2, -1/2, 6}
Latihan 6
Tentukan HP dari (x2 - 1)x-1 = (x2 - 1)x+1
Jawab :
Berdasarkan sifat F, persamaan diatas mempunyai 4 kemungkinan solusi.
Solusi 1 : Pangkat kiri sama dengan pangkat kanan.
x - 1 = x + 1
Tidak ada nilai x yang memenuhi.
Solusi 2 : Basisnya sama dengan 1.
x2 - 1 = 1
x2 = 2
x = √ 2 atau x = -√ 2
Solusi 3 : Basisnya sama dengan -1, dengan syarat kedua pangkatnya genap atau keduanya ganjil.
x2 - 1 = -1
x2 = 0
x = 0
Periksa : Untuk x = 0 maka
(x - 1) bernilai ganjil
(x + 1) bernilai ganjil
Karena keduanya ganjil, maka x = 0 memenuhi.
Solusi 4 : Basisnya = 0, dengan syarat kedua pangkatnya ≠ 0.
x2 - 1 = 0
(x + 1)(x - 1) = 0
x = -1 atau x = 1
Periksa :
Untuk x = -1 maka (x - 1) ≠ 0 dan (x + 1) = 0
Jadi, x = -1 tidak memenuhi.
Untuk x = 1 maka (x - 1) = 0 dan (x + 1) ≠ 0
Jadi, x = 1 tidak memenuhi.
∴ HP = {-√2, 0, √2}
Latihan 7
Akar-akar persamaan 9x+1 - 10.3x + 1 = 0 adalah x1 dan x2. Jika x1 > x2, tentukan x1 - x2
Jawab :
9x+1 - 10.3x + 1 = 0
9x.91 - 10.3x + 1 = 0
9(3x)2 - 10(3x) + 1 = 0
Misalkan a = 3x sehingga
9a2 - 10a + 1 = 0
(9a - 1)(a - 1) = 0
a = \(\frac{1}{9}\) atau a = 1
Untuk a = \(\frac{1}{9}\)
3x = \(\frac{1}{9}\)
3x = 3-2
x = -2
Untuk a = 1
3x = 1
3x = 30
x = 0
Karena x1 > x2, maka x1 = 0 dan x2 = -2. Akibatnya
x1 - x2 = 0 - (-2) = 2
Jadi, nilai x1 - x2 adalah 2.
Latihan 8
Akar-akar persamaan 6x2-x = 2x+1 adalah x1 dan x2. Tentukan nilai x1 + x2
Jawab :
Berdasarkan sifat C :
log 6x2-x = log 2x+1
(x2 - x) log 6 = (x + 1) log 2
x2 log 6 - x log 6 = x log 2 + log 2
x2 log 6 - x log 6 - x log 2 - log 2 = 0
x2 log 6 - (log 6 + log 2)x - log 2 = 0
(log 6)x2 - (log 12)x - log 2 = 0
Pandang persamaan diatas sebagai persamaan kuadrat dengan koefisien-koefisien :
a = log 6
b = - log 12
c = - log 2
Berdasarkan rumus kuadrat :
x1 + x2 = -b/a
x1 + x2 = log12 / log 6
x1 + x2 = 6log 12
Jadi, x1 + x2 = 6log 12
Sumber http://smatika.blogspot.com
0 Response to "Penyelesaian Persamaan Eksponen"
Posting Komentar